400-MHz ¹H-NMR spectroscopy of fucosylated tetrasialyl oligosaccharides isolated from normal and cirrhotic α_1 -acid glycoprotein

J.M. Wieruszeski, B. Fournet, D. Konan⁺, D. Biou⁺ and G. Durand⁺

Laboratoire de Chimie Biologique et Unité Associée au CNRS no. 217, Université des Sciences et Techniques de Lille Flandres-Artois, 59655 Villeneuve d'Ascq Cédex and [†] Centre d'Etudes Pharmaceutiques et Biologiques, CNRS UA 622, 5, rue J.B. Clément, 92296 Châtenay-Malabry Cédex, France

Received 2 August 1988

The comparative study of fucosylated tetrasialyl-oligosaccharides isolated from normal and cirrhotic α_1 -AGP was performed using permethylation and 400-MHz ¹H-NMR spectroscopy. These results clearly show the tetraantennary structure of these two oligosaccharides with hyperfucosylation for the tetrasialylated fraction from cirrhotic α_1 -AGP. In the latter oligosaccharide the simultaneous presence on two antennae (7 and 7') of the sialosyl Lewis X determinant NeuAc-(α 2-3) Gal(β 1-4) [Fuc(α 1-3)] GlcNAc has been observed. Moreover the 5 and 5' antennae were α 2-6 sialylated but without fucose.

α₁-Acid glycoprotein; Fucose; Alcoholic cirrhosis; Asparagine-linked oligosaccharide; ¹H-NMR

1. INTRODUCTION

During human cirrhosis, hepatocellular deficiency is associated with a dramatic increase in concanavalin A-unreactive forms of α_1 -acid glycoprotein [1,2], transferrin [3] and α_2 -HS glycoprotein [4]. Recently [5] we have compared the glycan structure of α_1 -AGP purified from cirrhotic ascitic fluid (α_1 -AGPc) and normal serum (α_1 -AGPn). Two major types of alterations were observed in cirrhotic α_1 -AGP. First, a shift of biantennary N-acetyllactosamine-type oligosaccharides towards tri- and tetraantennary oligosaccharides was observed. The second major type of change was concerned with a hyperfucosylation

Correspondence address: B. Fournet, Laboratoire de Chimie Biologique et Unité Associée au CNRS no.217, Université des Sciences et Techniques de Lille Flandres-Artois, 59655 Villeneuve d'Ascq Cédex, France

Abbreviations: α_1 -AGP, α_1 -acid glycoprotein; n, normal; c, cirrhotic; OMe, O-methyl; GlcNAcNMeol, N-acetyl-N-methylglucosaminitol

found in all cirrhotic patients. Permethylation data of the tetrasialyl-oligosaccharide fraction indicated that all fucosyl residues were exclusively linked to external N-acetylglucosamine residues by an $\alpha_{1,3}$ linkage. This implies the simultaneous presence of fucosyl and sialyl residues on the same lactosamine residue, which corresponds to the sialosyl Lewis X structure [6,7].

In the present report, the tetrasialyl oligosaccharide fraction of α_1 -AGPn and α_1 -AGPc was reinvestigated by 400-MHz ¹H-NMR spectroscopy in order to establish the linkage and the location of sialyl and fucosyl residues on each antenna.

2. MATERIALS AND METHODS

2.1. Preparation of the tetrasialyl-oligosaccharide fraction Cirrhotic α_1 -AGP was purified from ascitic fluid by an immunoaffinity procedure as described earlier [5]. Normal α_1 -AGP was kindly provided by Dr Wickerhauser (American Red Cross, Bethesda). The tetrasialyl-oligosaccharide fractions were obtained by hydrazinolysis of α_1 -AGPn and α_1 -AGPc followed by anion-exchange HPLC [5,8].

Table 1

Carbohydrate composition of α_1 -AGPc and α_1 -AGPn tetrasialylated oligosaccharides following hydrazinolysis and AX-10 HPLC^a

	Fuc	Gal	Man	GlcNAcb	NeuAc
α ₁ -AGPc	1.4	4.0	3	4.9	4.3
α_1 -AGPn	0.7	4.3	3	5.2	3.9

^a Calculated on the basis of 3 Man per oligosaccharide

2.2. Primary structure analysis

Permethylation of tetrasialyl-oligosaccharides was performed according to Paz-Parente et al. [9] and the partially methylated monosaccharides were identified by GLC-MS according to Fournet et al. [10].

For ¹H-NMR spectroscopic analysis, the oligosaccharide fractions were repeatedly exchanged in D₂O (99.95% atom D, Aldrich) at room temperature with intermediate lyophilisation.

Table 2

Molar ratios of monosaccharide methyl ethers present in the methanolysates of permethylated tetrasialylated oligo-saccharide-alditol from α_1 -AGPc and α_1 -AGPn^a

Methyl ethers	α_1 -AGPc	α ₁ -AGPn	
2,3,4-tri-O-Me-Fuc ^b	0.4	0.2	
2,3,4,6-tetra-O-Me-Gal	0.3	0.1	
2,3,4-tri-O-Me-Gal	2.3	2.1	
2,4,6-tetra-O-Me-Gal	1.9	1.9	
2,4-di-O-Me-Man	0.8	1.1	
3,4-di-O-Me-Man	1.0	1.0	
3,6-di-O-Me-Man	1.1	0.9	
3,4,6-tri-O-Me-Man	0.1		
3,6-di-O-Me-GlcNAcNMe	2.3	3.4	
6-O-mono Me-GlcNAcNMe	1.1	0.7	
1,3,5,6-tetra-O-Me-GlcNAcMeol	1.1	0.9	
4,7,8,9-tetra-O-Me-NeuAc	3.8	3.9	

- ^a Calculated on the basis of the sum of O-Me-Man = 3
- b Because of the relatively high volatility of this residue, this value was lower than expected

OMe, O-methyl; NAcNMe, N-acetyl-N-methyl; GlcNAcN-Meol, N-acetyl-N-methylglucosaminitol

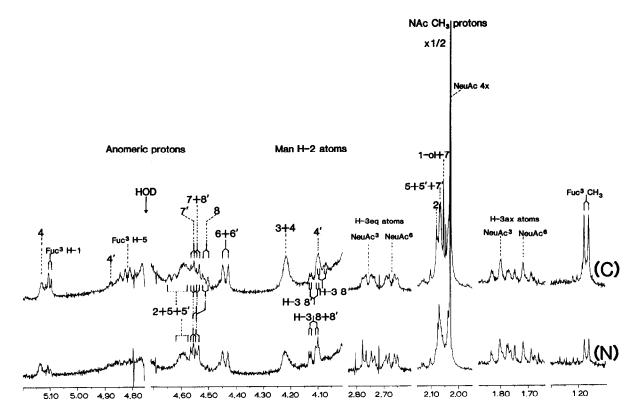


Fig.1. Structural reporter group regions of the resolution-enhanced 400-MHz 1 H-NMR spectra of oligosaccharide-alditols from α_1 -acid glycoprotein of normal (N) and cirrhotic patient (C), in HO 2 H at 300 K.

^b The GlcNAc residue linked to the asparagine residue and transformed to GlcNAcol after hydrazinolysis, re-*N*-acetylation and reduction was not calculated in this table

Table 3

400-MHz 1 H chemical shifts of structural reporter groups of constituent monosaccharides for oligosaccharide-alditols from α_{1} -acid glycoprotein isolated from normal (N) and cirrhotic (C) patients

Reporter group	Residue	Chemical shifts in the following structures ^a		
		N	ol C	
H1	GlcNAc-2	4.603	4.636	
	Man-3	nd ^b	nd ^b	
	Man-4	5.135	5.133	
	Man-4'	4.875	4.878	
	GlcNAc-5	4.593	4.596	
	GlcNAc-5'	4.593	4.596	
	Gal-6	4.440	4.440	
	Gal-6'	4.440	4.440	
	GlcNAc-7	4.555	4.546	
	GlcNAc-7'	4.555	4.556	
	Gal-8	4.545	4.514	
	Gal-8'	4.545	4.546	
H-2	Man-3	4.219	4.219	
	Man-4	4.219	4.219	
	Man-4'	4.103	4.102	
H-3	Gal-8	4.115	4.100	
	Gal-8'	4.115	4.115	
H-3 ax	NeuAc ³	1.801	1.800	
	NeuAc ⁶	1.718	1.718	
H-3 eq	NeuAc ³	2.757	2.759	
	NeuAc ⁶	2.672	2.674	
NAc	NeuAc ³ /NeuAc ⁶	2.030	2.030	
H-1	Fuc ³	5.103	5.103	
H-5	Fuc ³	4.822	4.820	
CH ₃	Fuc ³	1.171	1.170	

In the table heading, the structures are represented by a shorthand symbolic notation: ■, Man; •, GlcNAc; •, Gal; □, Fuc; ○, NeuNAc (α2-6); Δ. NeuNAc (α2-3). For numbering of the monosaccharides and complete structures, see the text b nd, not determined

Spectra were recorded on a Bruker AM-400 WB spectrometer operating in the pulsed Fourier transform mode at a probe temperature of 300 K and equipped with a Bruker Aspect 3000 computer. Chemical shifts (δ) are expressed in ppm downfield from the signal of the methyl of internal acetone (δ = 2.225 ppm in these conditions).

3. RESULTS AND DISCUSSION

The molar carbohydrate composition and methylation analysis of the tetrasialylated

oligosaccharides from α_1 -AGPc and α_1 -AGPn are given in tables 1 and 2, respectively. These results show clearly the tetraantennary structure of these two oligosaccharides with hyperfucosylation, for tetrasialylated fraction from α_1 -AGPc (1.4 residue of Fuc in tetrasialylated fraction from α_1 -AGPc instead of 0.7 residue of Fuc in tetrasialylated fraction from α_1 -AGPn).

In both cases, these fucose residues are located on external GlcNAc residues at the C3 position as demonstrated by the presence of 6-mono-O-methyl glucosamine residue and the identification of 1,3,5,6-tetra-O-methyl glucosaminitol indicating that the GlcNAc-1 was not fucosylated.

In order to obtain more information on the position of the fucose residue (GlcNAc 5, 5', 7 or 7'), the two tetrasialylated oligosaccharides were subjected to 400-MHz ¹H-NMR spectroscopy.

The NMR spectral data (fig.1) showed for the oligosaccharide-alditols isolated from α_1 -AGPn and α_1 -AGPc the presence of a tetraantennary N-acetyllactosaminic-type structure. This is demonstrated by the chemical shifts of Man 4 and Man 4' anomeric protons ($\delta = 5.133$ and 4.878 ppm, respectively) and of H-2 protons of Man 3, 4 and 4' ($\delta = 4.219$, 4.219 and 4.102 ppm, respectively) (table 3). The intensity of the N-acetyl signals ($\delta = 2.030 \text{ ppm}$) of Nacetylneuraminic acid residues indicates that the tetrasialylation of the two oligosaccharide-alditols with $\alpha 2-3$ and $\alpha 2-6$ linkages is in a ratio of 1 to 1. The galactose residues 6 and 6' are substituted by sialic acid in α 2-6 linkage (δ H-1 Gal 6: 4.440 and δ H-1 Gal 6': 4.440 ppm) while galactose residues 8 and 8' are sialylated in α 2-3 as demonstrated by chemical shift of Gal 8 anomeric protons (δ = 4.545 for α_1 -AGPn, $\delta = 4.514$ for α_1 -AGPc), Gal 8' anomeric protons ($\delta = 4.545$ for α_1 -AGPn; $\delta =$ 4.546 for α_1 -AGPc) and Gal 8 and 8' H-3 protons: 4.115 for α_1 -AGPn and 4.115, 4.100 for α_1 -AGPc.

The two oligosaccharide-alditols (from α_1 -AGPn and α_1 -AGPc) possess the same basic structure see fig.2.

The only difference between NMR spectra (represented at the same scale) of tetrasialylated tetraantennary oligosaccharide-alditols from α_1 -AGPn and α_1 -AGPc is the presence of one fucose (α_1 -AGPn) and two fucose (α_1 -AGPc) residues in $\alpha 1$ -3 linkage on GlcNAc 7 and 7'. This is demonstrated by chemical shifts of its H-1, H-5

NeuAc
$$\alpha$$
2 \longrightarrow 3Gal β 1 \longrightarrow 4GlcNAc β 1

8'
7'
6
Man α 1

NeuAc α 2 \longrightarrow 6Gal β 1 \longrightarrow 4GlcNAc β 1

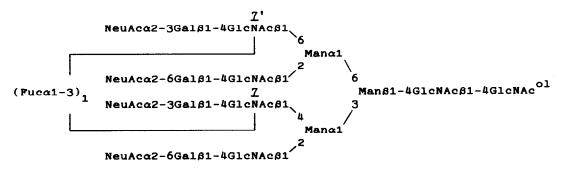
6'
5'
NeuAc α 2 \longrightarrow 3Gal β 1 \longrightarrow 4GlcNAc β 1

8
7
4
Man α 1

NeuAc α 2 \longrightarrow 6Gal β 1 \longrightarrow 4GlcNAc β 1

8
7
4
Man α 1

NeuAc α 2 \longrightarrow 6Gal β 1 \longrightarrow 4GlcNAc β 1


6
Fig.2.

and CH₃ group (δ = 5.103, 4.820 and 1.170 ppm, respectively). In α_1 -AGPn, the single fucose residue is linked to GlcNAc 7 or 7' while in α_1 -AGPc fucose residues are linked to GlcNAc 7 and 7'. This second substitution in the case of tetrasialylated oligosaccharide-alditols from α_1 -AGPc is demonstrated by the evaluation of anomeric protons of Gal 8 and GlcNAc 7 (δ H-1 = 4.514 and 4.546 ppm, respectively, tentative assignment) and by the upfield shift of *N*-acetyl

protons of GlcNAc 7 ($\delta = 2.055$ ppm). Unfortunately we cannot obtain more information about the *N*-acetyl region which appears in a bulk the resolution of which we cannot improve.

On the basis of molar carbohydrate composition, permethylation analysis and 400-MHz 1 H-NMR spectroscopy, the structures of fucosylated tetrasialyl-oligosaccharide-alditols isolated from α_{1} -AGPc and α_{1} -AGPn are proposed in fig.3. The cirrhotic hyperfucosylation is exclusively located

Healthy donor

Cirrhotic patient

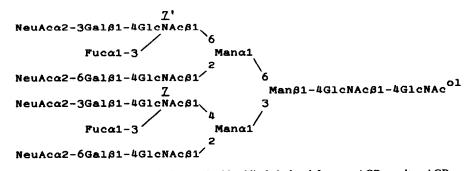


Fig. 3. Primary structure of fucosylated tetrasialyl-oligosaccharide-alditols isolated from α_1 -AGPn and α_1 -AGPc.

external to 7 and 7' GlcNAc residues corresponding to the sialosyl Lewis X determinant NeuAc (α 2-3) Gal (β 1-4) [Fuc (α 1-3)] GlcNAc. The increase and the precise location of the sialyl Lewis X antigen is described here for the first time in a benign disease such as cirrhosis.

Acknowledgements: This work was supported by grant 857007 from the Institut National de la Santé et de la Recherche Médicale (INSERM).

REFERENCES

- [1] Serbource-Goguel Seta, N., Durand, G., Corbic, M., Agneray, J. and Fèger, J. (1986) J. Hepatol. 2, 245-252.
- [2] Wells, C., Bog-Hansen, T.C., Cooper, E.H. and Glass, M.R. (1981) Clin. Chim. Acta 109, 59-67.

- [3] Spik, G., Debruyne, V. and Montreuil, J. (1983) in: Structural Carbohydrate in Liver Diseases (Popper, H. et al. eds) pp.447-483, MTP Press, Lancaster.
- [4] Jezequel, M., Seta, N., Corbic, M., Fèger, J., Agneray, J. and Durand, G. (1988) Clin. Chim. Acta, in press.
- [5] Biou, D., Konan, D., Fèger, J., Agneray, J., Leroy, Y., Cardon, P., Fournet, B. and Durand, G. (1987) Biochim. Biophys. Acta 913, 308-312.
- [6] Hakomori, S.I. (1985) Cancer Res. 45, 2405-2414.
- [7] Fukushima, K., Hirota, M., Terasaki, P.I., Wakisaka, A., Togashi, H., Chia, D., Suyama, N., Fusuki, Y., Udelman, E. and Hakomori, S.I. (1984) Cancer Res. 44, 5279-5285.
- [8] Cardon, P., Paz-Parente, J., Leroy, Y., Montreuil, J. and Fournet, B. (1986) J. Chromatogr. 356, 135-146.
- [9] Paz-Parente, J., Cardon, P., Leroy, Y., Montreuil, J., Fournet, B. and Ricart, G. (1985) Carbohydr. Res. 141, 41-47.
- [10] Fournet, B., Strecker, G., Leroy, Y. and Montreuil, J. (1981) Anal. Biochem. 116, 489-502.